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INTRODUCTION

The aim of this paper is to present a theory of stochastic evolu-

tion equations governing processes that take values in duals of

countably Hilbertian nuclear spaces. For Hilbert or Banach space

valued processes such studies are available, e.g. in Curtain and Prit-

chard [31 and Kotelenez and Curtain [9].

In recent work arising from problems in such diverse fields as

chemical kinetics, n-particle diffusions and neurophysiology, one

comes up with a situation where a sequence of stochastic processes

of interest converges weakly to an --dimensional process satisfying

a stochastic evolution equation on a suitable space of distributions.

It is, therefore, of interest to develop a general theory of the

existence and uniqueness of solutions of stochastic evolution equa-

tions in a dual ' of a nuclear space D where the driving force is

a '-valued martingale. We do this in Section 2 where we obtain an

"evolution" or "mild solution" in the form of a stochastic integral

with respect to the given (V'-valued) martingale. A feature of

these equations is that in general, over any finite interval [0,T],

the solution lives in a Hilbert space 0' while, when no finite in-

terval is specified it can only be asserted that it takes values

in '.

We have to preface the stochastic part of our work by a study of

deterministic evolution systems (including perturbed systems) de-

fined on countably Hilbertian nuclear spaces. In applications, one

is led to consider evolution systems on V in the following manner.

Initially the problem is defined on a Hilbert space H with a family

of infinitesimal generators fA(t)}. It is often the case that we

can find a Gelfand triplet * H -'n (with ¢ a countably Hilbertian

,% %
*..........
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nuclear space) such that the restriction A(t) of A(t) on D is a

continuous linear operator on (. Thus one is led to the question

of when the family {A(t)} generates an evolution system on D or,

equivalently on V'. This is the problem considered in Section 1.

The theory of evolution systems on Hilbert and Banach spaces has

been developed extensively by a number of authors. They are con-

stru-Ked from (unbounded) infinitesimal generators (A(t)} of C0 -

semigroups. Evolution systems over locally convex spaces have been

constructed from C 0-equicontinuous semigroups by K. Yosida [19] and

from quasi-equicontinuous C 0-semigroups by Y.H. Choe [21].

We have not been able to find results of sufficient generality

*that we could use, viz., results on evolution systems on nuclear

spaces constructed from (C0 ,l)-semigroups. We derive these systems

using the ideas from Kato's theory of evolution equations on Banach

spaces (see Pazy (16], Chapter 5). A key notion in this construction

is that of a stable family of generators or semigroups on D.

In the last section, the theory developed in Section 2 is applied

to examples arising in various fields of applications. The sto-

chastic equations of Hitsuda and Mitoma, Kallianpur and Wolpert,

Kotelenez, and Mitoma [4,7,8,141 are shown to be particular cases of

the equations of Section 2 and so the existence of a unique solution

follows as a consequence of Theorem 2.1. It also follows that all

the examples possess a family of stable generators. Mitoma's example

in [141 is particularly interesting in that the evolution system is

generated by a stable family of (C0 ,1 )-semigrouns which are not

equicontinuous.

....... ........:..................................
..........................................
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1. EVOLUTION AND REVERSED EVOLUTION OPERATORS

Let D be a countably Hilbertian nuclear space whose topology 7

is defiaed by an increasing sequence of Hilbertian norms

1 "2 " <  n .... Let 'n be the completion of $ by

Vn the topological dual of _ , 1 1_ the dual norm of P and V be

the strong topological dual of D. The completeness of implies

4)nl~ and V' =~ u

We denote by L(D,') (respectively L(',')) the class of continuous

linear operators from '¢ to P (' to ').

A two parameter family of operators {U(t,s) 0 !s ---t <-} in

L(V',V) is said to be an eiuo~ution system on V' if thE following

two conditions are satisfied:

(i) U(t,t) =I, U(t,r)U(r,s) = U(t, s) 0 s s s r ! t, ,

(ii) For each tP -' the map (st) -U(t,s),p is strongly continuous. We

rcall that for * and ' strong and weak convergence of sequences coincide.

Let A'(t)t be a family in L(','). We say that this family

of operators generates the evolution system {U(t,s) 0 <-s --t <-I

if the following relations are satisfied:

t-U(t,s)y =A' (t)U(t,s)y for all p E ' 0 <s <t

dt

dU(t,s) =-U(t,s)A' (s),p for all p V 0<s < tds 0 t

For s --t define the operator T(s,t) : - by the relation

(1.1) (U(t,s),p) [ = p[T(s,t),4] for all , , s

%4 . '. .,
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In a similar way for each t r 0 define the continuous linear operator A(t): - by

(1.2) (A' (t)p) T] = w[A(t)p] for all V .¢, .

Then it is not difficult to verify that the continuous linear

operators {T(s,t) :0 Ss t <-} on D have the following properties:

(1.3) T(s,t) = T(s,r)T(r,t) 0 <s <-r -t, T(t,t) =I.

(1.4) For each E P the maD (s,t) -T(s,t)p is t-continuous.

d
(1.5) -T(s,t)P = T(s,t)A(t)o for all 0 0 <-s <-t.

dt

d(1.6) -T(s,t)p = -A(s)T(s,t)k for all 4 E, 0 -s -t.

Definition 1.1. A two parameter family of operators T(s,t)

0 <-s -t in L(¢,f) is said to be a reversed evolution sstem if it

satisfies (1.3) and (1.4) above. If a family {A(t)}t of linear

operators on D satisfies equations (1.5) and (1.6) we say that

{A(t)}t>0 generates the reversed evolution system T(s,t). Relations

(1.5) and (1.6) are called the forward and backward equations.

The main result of this section is Theorem 1.3 below where we

give sufficient conditions on a family of linear operators on ¢ to

generate a reversed evolution system {T(s,t) :0 -s <-t <-} on ¢.

Using the relations (1.1) and (1.2) we then have that the family

{A' (t)l tz of linear operators on ' generates an evolution system

(U(t,s) : 0 <-s -t <c} on 4' It will be convenient to denote U(t,s) by

T'(t,s) and refer to it as the adjoint of T(s,t). This is particu-

larly convenient when T(s,t) is the primary object in our discussion.

Our results and examples on this work deal with semigroups of

linear operators on 4 which are not necessarily equicontinuous as



those presented in Yosida [201 for locally convex spaces or

Miyadera [151 for Fr~chet spaces. We have to deal with semigroups

of linear operators of (C0 ,1 )-class defined below. The terminology

is due to Babalola who has studied such serrLigroups on locally convex spaces [11.

Definition 1.2. A family {S(s) :s >0} of linear operators on ¢ is

said to be a (C0 ,l)-semigroup if the following three conditions are

satisfied:

(1) S(s1 )S(s2) S(s1 +s 2 ) for all SlS2 - 0, S(0) =I.

(2) The map s -S(s) is #-continuous for each P E P.

(3) For each q -0 there exist numbers Mqaq and p ->q such that

o s
1S(S)I -M e q lI for all ED, s -0..Ss) l q P

We recall that a semigroup S(s) is called a C0-semigroup if it

satisfies (2) above. It is said to be an e ',n-z:u semigroup

if it satisfies (l)-(2) and (3) with a =0, q 20. Thus equicontin-

uous semigroups are special types of (C0 ,l)-semigroups. The case

of a = j, q 0 is considered in (151 and [211.
q

The next two theorems characterize (C0 ,l)-semigroups. Before

presenting them we introduce some notation: Let {S(s) :s 20} be

a (C0 ,1)-semigroup on D. The infinitesimal generator A of S(s) is

defined as

A = lim S(s) - (limit in P)
s 0 s

whenever the limit exists, the domain of A being the set D(A) -1)

for which the above limit exists.

0o

o%
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Let {"I :n 01 be any sequence of increasing norms on also

defining the r-topology of (D. Such a sequence of norms will hence-

forth be called T-compatible. We will denote by ( Inj the "

completion of (. Then D - nc I l for n m and 4 = n=O n1

Suppose that A :V(A) c D -(D is a densely defined closed linear

operator. If for some n _-0 the linear operator

A :D(A) cn jn CI

is closable in nD then we denote by A the closure of A in ,
jnj' n

The proofs of the following two results involve standard argu-

ments and are therefore omitted.

Theorem 1.1 (a). A C -semigroup {S(s): s20} on D is a (C0 11)-
0

semigroup if and only if there exists a sequence of T-compatible

norms {!. n : n_>} on ( and sequences of nonnegative numbers
n

{} such that for each n-On n >O

o sn(1.7) [ s(s) n < e ( for all ( D , s - 0.

(b). If {S(s): s-0} is a (C0 ,1 )-semigroup on i then there exists

a family of Banach spaces f{n n>_0} whose norms { U. : n0}

are r-compatible, such that for each n -0 S(s) can be extended to

a C0 -semigroup {Sn(s): s-0} of linear operators on

0.....



Theorem 1.2. A necessary and sufficient condition for a closed

linear operator A on 4 to be the infinitesimal generator of a

unique (C0,1)-semigroup {S(s) :s >-0} on (D is that

(l) V(A) is dense in 4).

(2) There exists a sequence of T-compatible norms {'i n :n 201 on

4D and no  0 such that for each n -n o the following two conditions

hold:

(a) A is closable in DIn !.

(b) The closure An of A in 4) is the infinitesimal generator

of a C0 -semigroup {sn(s) :s 0} on such that for s >-0

n
S (s) maps 1 into (D and its restriction to 4) coincides with S(s).

The following is a perturbation result for (C0 ,1 )-semigroups on 4.

Proposition 1.1. Let A be the infinitesimal generator of a (C0 ,l)-

semigroup {S(s) :s 0} on 4). Let B be a continuous linear operator

on 4) such that there exists a sequence of T-compatible norms

{ fl~ n :n -01 on 4P and no -0 such that for n >n 0 B can be extended

to a continuous linear operator on 4D Then A +B is the infini-

tesimal generator of a (C0 ,l)-semigroup (P(s) :s 2!0} on 4) satisfying %

the integral equation

s
P(s) = S(s) + fS (s -r) BP (r) dr ( D4).

0

Proof: Use Theorems 1.1, 1.2 and the classical perturbation theorem

for semigroups in Banach spaces (Theorem 3.4.2 in [171).

We now consider the construction of reversed evolution systems

on 4. In order to do this we need to introduce the following con-

cept.



8

Definition 1.3. A family {A(t)} of infinitesimal generatorst->o
of (C0 ,l)-semigroups (S t (s) :s 0}t on ¢ is called stable if

there exists a sequence of r-compatible norms {Qbn :n 0} on ¢

such that for each T >0 there exists q0  0 and for q -q 0 there are

constants M =M (T) i and a =a (T) satisfying the following con-q qi q qi

dition

k

k qj
(1.0) I S (sj) q Me for all , s > 0j=l t j q q

whenever 0 t I -t 2 . ..t t _T, k 0. Here and in the sequel the
1 2 k

ktime ordered product 1lk 1 S (S is S t(1)t (s2 t (j 2 k
The family {A(t)} is said to be uniformly stable if for each

t 0
q >0 M and a are independent of T and (1.10) holds for

q q
0 < t I <t 2  t <t <. In either case we call M and j q 0 the

stabji "tyi orstants.

Remark 1.1. In the literature on evolution systems in Banach

spaces (see [16] or [17]) the product lk3= B(tj) for 0 tI ... tk

is taken in descending order, i.e. B(tk)B(tkl)...B(tl). Some

results (as for example the analogous ones for Banach spaces of

the next three propositions) remain true whatever the order in

which the product is taken. However, in the construction of

reversed evolution systems (Theorem 1.3 below) the order of this

product is important and will be taken in "increasing order" as

explained in Definition 1.3.

% % % %
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In the construction of evolution systems in a Banach space X

the definition of stability of a family A(t) of infinitesimal

generators of C -semigroups in X is given in terms of the resolvents
0

R(X;A(t)). However, in a nuclear Fr6chet space D (or more generally

in a locally convex space) the resolvent of an operator A(t) might

not exist even when A(t) does generate a semigroup S t(s) on . (See

[1]). Nevertheless, an equivalent condition to (1.10) can be given

in terms of the resolvents R(X;A (t)) of the corresponding infinites-

imal generators A (t) on each of the Banach spaces "
q 1qj f

Proposition 1.2. The condition (1.10) is equivalent to the follow-

ing: (a q,-) Q(A q(t)) for 0 -t 5T and

k

k -k
(1.11) IT R(X;A (t.))pII - Mq[l I (X -aq) X >a , CFq~ j q q q q

j=l,

where {t } are as in Definition 1.3 and k -0.

The proof follows on the lines of Proposition 4.3.1 in Tanabe [17]

for each q -q0 "

The following two criteria are useful in testing the stability

of a family of operators {A(t)}t on D.

Proposition 1.3. Let {A(t)} be a family of infinitesimalt_>O

generators of (C0 ,l)-semigroups {S (s) :s -0} on ¢. Let
t t 0

:. :n- 0} be a sequence of T-compatible norms on ( such thatn

for each T >0 there exists q0 > 0 and for q ?q 0 there is a constant

5 =g (T) satisfying the conditionq q

(1.12) S (s) j e¢ q q . , s -o, 0 *-t T.

t q q

k%
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Then {A(t)}t is a stable family on D. If moreover for each q ,0

a q is independent of T then {A(t)}t>0 is uniformly stable.

Proof: Using (1.12) in Ik= 1 S t (sj )0q we obtain (1.10) with Mq =1.

Proposition 1.4. Let {A(t)}t be a family of infinitesimal generat-

ors of (C0 ,l)-semigroups {S t(s) :s 0t_ on $ stable with respect

to the sequence of norms {"11 1n :n _01. Let {B(t } t_0 be a family of

continuous linear operators on $. Assume there exists q -0 such

that for q 2:q; and T >0 {B(t)}0<_t< T can be extended to a family of

uniformly bounded operators from 4 qJ to 4q Then (A(t) +B(t)}t_0

is a stable family of infinitesimal generators of (C0 ,1 )-semigroups
{V (s) : s -0}0 on 4.

t t 0

Proof: Let q -q0 and also denote by B(t) the extension of B(t) from

iq t q Let

K C M sup IB(t)iIC( ,1 L

0<-t<-T qi qJ

From Proposition 1.1 for each t- 0 A(t) +B(t) is the infinitesimal

generator of a (CO l)-semigroup {P t(s) :s 01t_>0 on . For each
t t.0

T> 0 let q,Mq q _ 0 be the stability constants of the family

{A(t)} } We notice that Proposition 4.3.3 in [171 (see also Theorem 5.2.3

in (161) remains true if the product of the correspcnding operators is taken

in increasing order. Then using this proposition we have that for

each q "-max(q0 ,q)

k
k (g +K (T)Mq) s.-<t.C. Mqe q c q j~l ]n.ii q s, s.-7l P (sj j-1 1 q

j= l t j 
c M

0 <t I <t _t T, k 21. Hence the family {A(t) +B(t)} is
2 2~ k t 0
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stable with stability constants Mq1 uq +K (T)M q qmax(q0 ,q).q

The main result of this section is the following theorem which

gives sufficient conditions for the existence of reversed evolution

systems on (P. Its proof is on the lines of the construction of evo-

lution systems on Banach spaces following an idea due to T. Kato

(see [16] and [17]).

Theorem 1.3. Let (A(t)} be a family of continuous linear operat-

ors on D such that for each t -0 A(t) is the infinitesimal generator

of a (C0 ,1 )-semigroup on D. Let {1I-11n :n 2:0} be a sequence of t-

compatible norms on D such that the following two conditions hold:

(a) {A(t)} is a stable family with respect to {1-l'In :n 20}.

(b) For each q -0 there exists p 2 q such that for each t 0 A(t)

has a continuous linear extension from to ¢ (also de-

noted by A(t)) and t -A(t) is L(D pl,¢ q )-continuous.

Then there exists a unique reversed evolution system

(T(s,t) :0 <-s <-t <'} on D such that for each T >0 the

following three conditions are satisfied:

41
(1) For some q 0 -0 and all q q0

0 (t-s)
IT(s,tt)q s Me q for all , 0- s t' T,

where M =M q(T) and uq =a q(T) are the stability constants;

(2) -AT(s,t)m T~s,t)A(t)4 for all 0 s0 sit T
dt

(3) AT(st)p =  -A(s)T(s,t), for all D , 0 -s .- t T;

- ds

A.................................................................'.. .':: .-.,. ''..... -.? , 'w'. , 
.
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If moreover {A(t)}t-_O is a uniformly stable family then conditions

(l)-(3) hold for 0 -s <t

Proof: Let T >0 be fixed but otherwise arbitrary and let q 0.

Then by condition (b) there exists p q such that

(1.13) ,lAct) -A(s):L[(pDq) st 0 uniformly in t - [0,T].

'p! q1

n =Let k nT k =0 ...... n and define the following step function

approximation of A(t):

A(tk )  n < tk

An(t=0, ,..., n-

A(t) t =T.

Then by (1.13) for each q 0-- there exists p >_q such that

(1.14) ,A (t)- An~),( , l 0

uniformly in t E [0,T].

For each t -0 let {S (s) :s -01 be the (C, 11)-semigroup on-t
generated by A(t). For n ?1 define the two parametez family of

operators

S n(t-s) tn s t tnt. +

T (s,t)=
n

n k-i
S) 7T n)tSt for k >e '".

S n(t -s) - S n for St =+ tj tk -
k n tntt k+l. I

- n. tn  .

t s4.
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.em

Using the semigroup property of {St (s) :s >-0} it is easy to

verify the reversed evolution property of T (s,t) i.e.n

T (s,t) =  T (s,r)T (r,t) 0 < s !5 r <t T, T (tt) =I,n n n n

and using the continuity of the map s -S t(s) p for each l and

t >-0 it follows that for each E P

(1.15) (s,t) - T (s,t)p is continuous in P, 0 ss t T.

Thus for each n !1 {T (s,t) :0 ss !5t <-T} is a reversed evolutionn

system on P. Moreover, from the definition of T (st) and then

fact that A(t) is the infinitesimal generator of {S (s) :s > 0} we

obtain the following

(1.16) dT (s,t)P = T (s,t)A (t) t3t n  j =1,..., n, 04s!_tKT, :4(1.6) dt n n n '

and

(1.17) --T (s,t) =-A (S)T (s,t)p s t'. j =I,..., n, 0 st T, >.
ds n n n

Next for each 0 -A the map r -T (s,r)T (r,t)p is differentiable
n m

except for a finite number of values of r and

d(T (sr)Tm(rt)(D) T (sr)(A n(r) -A (r))T m(r,t), .drT ('rTm n n m m
a.

Then

t
Tn(st) -T m(S't) = fT n(sr)(A n(r) -Am(r))Tm(r,t)pdr , 0 s,-t T

and for each q -0 and p
,.

t S t(1 ),t -T r, T (s,r) (A (r) -A (r) T (r,t)' dr 0 s t ..(1.18) iT (s t)¢ T (S' t) _jq M M q

m q n n " .
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Now using the definition of Tn (s,t) and the stability condition

(1.10) we have that for each q -qo0 (where q is given by the stability

condition) and 0 s r t <T

a q(r-s)
(1.19) 1Tn(sr) (A Cr) -A (r))T (r,t)I q < r (A(r) -A (r))T (r,t)Iq-

m1

Using condition (b) we have that for each q -q 0 there exists p --q

such that for 05s -5r -T and ( E.-

(A n (r) -A m(r))T m(r,t) q  A n(r) -A m(r) Lp(D pl,¢Dqj Tm(r,t) p

and using again the definition of T m(r,t) and the stability condition

(1. 10) we have that for p E D and 0 r -t s T

ap (t-r)
(1.20) IfT m (r,t) II M pe p,

Then taking M =max(M ,M ) and a =max(apaq) using the last three

inequalities in (1.18) we obtain that for 0<s -t- T and EI)
t

(i~~ ~~ ~~~~ 21) aln S' ) Tm S t ¢ e(t-s) 110Il s t q
(1.21) IT (st)(P-T (st)-PI1 e flIA (r) -A (r)II (drn m q p 5 n m L'pt 1 1

which, using (1.10), goes to zero as n,m goes to infinite.

Hence for each 0 E D, q q0 and 0 -s <-t -T {T (St)O}nc is
0n n 1l

a Cauchy sequence in ¢Dqj and therefore a Cauchy sequence in D.

Thus for each E D and 0 -<s !5t <-T define the reversed evolution

system

(1.22) T(s,t)Y = lim T (s,t)4 (limit in fl.
n

Then by definition we have that T(s,t)¢ c¢ and using (1.20) we

have (1) in the Theorem which also shows that T(s,t) L

Properties (1.3) and (1.4) follow since T (s,t) satisfies them.

n

- - A - ' k." ".,.
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Before proving (2)-(3) in the theorem we make the following

observation: The system {T(s,t)} = {TT (s,t)} in (1.22) is defined

for 0 <-s -t <-T and would appear to depend on the interval [0,T].

We now show that under the stability condition on the family

{A(t) t>_0,

(1.23) T (s,t) =T (s,t) for all EI), 0 ss <t <-T !T'.

Let T' >T >0 and define in =kT' k =0,1,..., n-1
k n

A (t) tk t k+ k =0,,..., n-i
n k k- k+l

A (T') = AT')n

S (t -s) -n <s <-t ,in

tn -j+

T s,t) =
n 1 -n k- 1 T v

S n n (t -s+1 ) a S ( ')S n (t tk)
t j=f+l tk tk

tk k+I

n < - n

Using (1.13), for each q -0 there exists p -q such that

(1.24) IA ( t) -A n(t)ll (D pj, Dq ) n' 0

uniformly in 0 -t -T T'. Next for each -(D the map

r -Tn (s,r)T n(r,t) is continuously differentiable except for a

finite number of values of r and

d n

ar(Tn(s'r)T n(rt)p) T n(s,r)(A n(r) -A n(r))T (r,t)o

i.e.,
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t
T (S,t),-T (s,t)O fT (s,r)(A (r)- (r))T (r,t) dr for all

n n nf n n nS
0 !c s -t !5 T T'.

Then using (b) and the stability condition, for each q -0 thereo,-

exists p -q such that t

IT (s,t) p -T (s,t) q <- Mq(T )ts(Tef1 An(r) -n (rC ( p  dr
n n q q fp A (r -A N)I L 1 ( ,q

where a =max(a (T), a(T')) and M (T), M (T'),Iq(T) and p (T') are
q p q p q p

the stability constants. Then using (1.24) and (1.22) we obtain

--(1. 23).

Now we return to the proof of the theorem. To prove (2) let
.-

q > 0 and e then since for each t !0 A(t) is the infinitesimal

generator of S t(s) :s -01, the function r -Ss(r -S)Tn (r,t)j is

differentiable except for a finite number of values of r and we

have that

t
JIT (t,s)o -S s (t - S), IIq -4- Ss (r - s)T n (r,t) }drjjlq

s

t

= IIfSs (r-s) (A(s) -An(r))T n (r,t) pdr q
s

t
M2 ea(t-sl f 11An(r)-As- s n s 4 ,"q)dr

for all D , 0 <s <t -T where M,a and p are as in (1.21). Then using

(1.14) and (1.22) we obtain that for 0 !s !t -T and
t

(1.25) JIT(s,t)s -s (t -s), I1 q i5 - ea(t-s) 11 L fIA(r) -A(s):! L dr.
s p L( "q

Hence by dividing both sides of (1.25) by t -s and letting t -s

we have that for each q > 0 and

1 "T(s,t) -s ( t -S) 0 as t s.
st

LS
i . ,::-- .. ;.,.. .. :<, ; .. / .- ' . < .- < .. g i- . -. , .i. - . - ' , -i- - i--' -. * - - -i. .- .- ,
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d 
+

Then dT(s,t)p exists in 4 and since dS -s)= A(s)S (t -s): we

dt dt s s

have that
d+

(1.26) tT(s,t)WIts= A(s)$ (limit in fl for all -t .
tJ.

In a similar way one shows that for each p E

d
(1.27) d-T(st)It = -A(t)$.

Next using (1.26) we have that for $ (D and s <t

d + I
(1.28) d-T(s,t)$ lim nIT(s t +h),-T(s,t)$}

h'

T(s,t)lim 1(T(t,t +h)p -}= T(s,t)A(t) .
h 0

Now for s <t, using (1) in the Theorem, (1.4) and (1.27) we have

that for each q 2q 0 and (P

limsupllT(s,t +h) T(s t)A(t) 1 i
htO h q

limsupjT(st +h){-T (t+h, t) - T(s,t +h)T(t +h,t) A(t) qh .
h+0

a (t+h-s)
- limsup M e q  h '  - T(t +h,t) Alt) =

h* 0 qh -

Then for s <t and E D

d- 1
E T(st)i = lim h{T(s,t +h), -T(s,t)$} = T(s,t)A(t)

h+O

which together with (1.28) imply (2) in the Theorem. In a similar

way (3) is proved.

P " " .* . . . . . . . . . .X" o"' '".............................. .. ......

o-we,~ ....- C.-WJY-< -.
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To prove uniqueness of the system (T(st) :0 Ss t <T}, suppose

that V(s,t) is a reversed evolution system with generators ijA(t)} ti0

satisfying (1) and the same forward and backward equations (2) and

(3). Then except for a finite number of values of r the map
r -V(s,r)T (r,t)(p is continuously differentiable for each t ED and

n .

we obtain
t

V(s,t)p-T (s,t)O = JV(s,r) (A (r) -A(r))T (r,t)Odr for all E D, 0 <-s -t -T.
n n n

5

Using (1.20) for T (s,t) and (1) in the theorem for V(s,t) we ob-

tain that for each q -0 there exists p -q such that
tq

lV (s, t)-Tn(s, t)¢ 0 m- M(T) mp(T)cO t s e~p (0 f lA(r) -An(r)ll(I I ¢ q~ r  2J
n q q p p5S n L q,)dr.

Then by (1.14) and (1.22) we have

V(s,t)¢= T(s,t)O for all E (P, 0<s -t sT, T >0.

Definition 1.4. A reversed evolution system {T(s,t) :0 -<s -t <}

on V satisfying (l)-(3) in Theorem 1.3 is called a (C0 1l)-rev,'rse "

e:uo -ion syste .

The following is a perturbation result for (C ,l)-reversed
0

evolution systems on ?.

Theorem 1.4. Let {A(t)}t 0 be a family of continuous linear

operators on D satisfying the conditions of Theorem 1.3. Let

{B(t) }t_ be a family of continuous linear operators on ¢ such that

there exists q0 10 and for q -q0 and t _0 B(t) has a continuous
0i

linear extension to and the map t -B(t) is L(, )-con-Iq , q' '-

tinuous. Then there exists a unique (C0 ,1)-reversed evolution

system V(s,t) on , satisfying (l)-(3) in Theorem 1.3 for the stable

family iA(t) +B(t)} of infinitesimal generators of (C ,1 )-se m i-

t 0O 0
.-S"

...................................... V... . ~ ..
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groups. Moreover V(s,t) satisfies the integral equation

t
(1.29) V(s,t) = T(s,t) + fT(s,r)B(r)V(r,t), dr for all E¢, 0 s -t

s

where T(s,t) is the (C0 ,1 )-reversed evolution system generated by

the family {A(t)}t>o.

Proof: Under the conditions on {B(t)}t>_ and using Proposition 1.4,

the family {A(t) +B(t)} satisfies the conditions of Theorem 1.3

which proves the existence of the reversed evolution system V(s,t)

satisfying properties (1)-(3) in Theorem 1.3 for the family

{A(t) +B(t) }t>0.

To show that V satisfies (1.29), for each T > 0 and E ( ¢ define

for 0 s s t < T

V 0(s, t) T T(s, t)

(1.30) V(m ) (O,t) = T(s, r)B(r) n-i) (r,t) ;dr m 1
s

V(S,t) = y V(m ) (s,t) (convergence in D).
m= 0

Applying (1) in Theorem 1.3 to T(s,t) and using the continuity of

the map t -B(t) in L(q I , )ql for q -q 0 ' we have that for q -q0 ,

0 s - t T and m >!l

c (t-s) m
(M) q i.~( o l

[ ( (s, t) M e (K (T )M ) (t sI m for all
q q q q M

where

Kq(T) sup !IB(t) L (I,,

O't- L- K- -' ,q)



20

Then for each $ ( the series (1.30) converges on € uniformly in

0 s <t _T and therefore V satisfies (1.29). Moreover for q z0

(,j +K (T)Mq) (t-s)
- q M q qi l for all , 0 <-s < t Tq V(sct)i Mq q

which shows (1) for V in Theorem 1.3.

It is not difficult to prove that V also satisfies (2) and (3)

in Theorem 1.3 which shows that V =V.

As a consequence of Theorem 1.4 we now obtain the reversed

evolution system generated by a family of operators of the form

{A +B(t)}t0O Following the terminology for Banach spaces used by

Curtain and Pritchard [3] we call these operators "quasi-generators".

Corollary 1.1. Let A be a continuous linear operator on ( which is

the infinitesimal generator of a (C0 ,l) semigroup {S(s) :s 01 on ¢.

Let {B(t)} be a family of continuous linear operators on $ such
t 0

that there exists a sequence of T-compatible norms {l] :n 01 on
n

$ and q0 L 0 such that for q q 0 and t -0 B(t) has a continuous

linear extension to D I and the map t -B(t) is L(41q) 'q!) con-

tinuous. Then the family {A +B(t)} is stable and there exists

a unique (Col)-reversed evolution system T(s,t) on t satisfying (l)-

(3) in Theorem 1.3 for the family {A +B(t)} t_0. Moreover T(s,t)

satisfies the integral equation

t
(1.31) T(s,t) = S(t -s), + fS(r -s)B(r)T(r,t)Pdr for all , 0-s-t.

s

The following result will be used in proving uniqueness of the solu-

tion for the stochastic evolution equation in the next section.

e'~
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Proposition 1.5. Let (A(t)} ~ be a family of linear operators as

in Theorem 1.3. Then for any X ' the V'-valued initial value problem

t
xt = x +JfA'X ds

0aSs

i.e.,

X tW =X0Lw +fX [A S(]ds for all ,

0

has a unique V'-valued solution given by r,- =Tt Ct ,0)X 0 where

(T(s,t1) :0: s! t <-I} is the (Col)-reversed evolution system on

generated by the family (A(t)} -:O

The proof of the above proposition follows easily from the

following lemma.

Lemma 1.1. Let {A(t)} _ be a family of continuous linear operators

on (D satisfying the conditions of Theorem 1.3 and let

(T (s,t) : 0 s st < -1 be the (Col)-reversed evolution system generated

by it. Let B be any continuous linear operator from ( to ~.Then

for each F V ~ and 0 !5 u t the following identities hold:

t
(a) F[BT(u,tY ] = F[BO] + fF[BT(u,s)A(s) Ids for all ,

u

t
(b) F[BT(u,t)o] = F[BO] + fF[BA(s)T(s,t) Ids for all D

u

Proof: Use the forward and backward equations given by (2) and (3)

in Theorem 1.3.
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2. STOCHASTIC EVOLUTION EQUATIONS

Let (2,F,P) be a complete probability space with a right con-

tinuous filtration (Ft )t1!0 F0 containing all the P-null sets of

F. Let (¢,!-" n -0) be a countably Hilbertian nuclear space andn

tn, 4' n 0 and ' be as in Section 1. Let M =(Mt ) t20 be a V'-valued
nn t

martingale with respect to Ft, i.e. for each p (M Ft) is
t t t:20 4

a real valued martingale. This section concerns the solution of

the V'-valued stochastic evolution equation

(2.1) dt A' (t) dt + dM t > 0
tt t

0

where y is a V'-valued random variable, {A(t)} is a family of
t>_0

continuous linear operators on D generating a (C0 ,l)-reversed evo-

lution system {T(s,t) :0 5s -t <-} on D and {A'(t)t are defined

by the relation (1.2). We also consider perturbations of (2.1)

i.e.

(2.2) d t = A'(t) tdt + B'(t) tdt + dMt

where {B(t)}_ is a family of continuous linear operators on ¢.

t 0o

Our results also include the case when A(t) =A t -0 and A is the

infinitesimal generator of a (C0 ,l)-semigroup on ¢ (Corollary 2.2).

To begin with the study of stochastic evolution equations driven

by '-valued martingales we first recall from Mitoma [121 some

properties of such '-valued processes. We will denote by D(T;' ')

(respectively C(T, j t)) the space of right continuous processes with left

hand limits (respectively, continuous orocesses) indexed by T([0,T]

or [0,-,)) and with values in (' or

q%"

[ .. ." .. .. . ' . . . . . ... .... , - " - ' . . '---.. . . -. . -. ". '-". . ... " ...-- - ' - "
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Proposition 2.1. (a) If M = (Mt)t 0 is a €'-valued martingale there

exists a '-valued version, also denoted by M, such that the follow-

ing two conditions hold:

T(i) For each T >0 there exists mT >0 and M D([0,T1;¢' ) a.s.
T ( t T

where M = (M : 0 5 t 5T ).

(ii) M.E:D([0,-) ;(D ) a.s.-'

(b) If moreover E(M [ ]) 2< for all E D, t 0 then for each
t

T
T >0 there exists q>0 such that M D([0,T]; ' ) a.s. andT >T 0

E( sup IMt2 ) <
0 T -T

In view of the above proposition, from now on we shall always

consider V'-valued martingales in D([0,-);D').

We now give the meaning of the solution of the stochastic evo-

lution equation (2.1). A similar definition is given for the solu-

tion of the perturbed equation (2.2).

Definition 2.1. We say that the stochastic evolution equation (2.1)
has a V'- >,: s :in t = (-t) if satisfies the following

t t>0

conditions:

(a) is V'-valued, progressively measurable and F -adapted.
t t

(b) -t] = y[ + fs[A(s)Y]ds + M [$] for all ,.A, t 0 a.s.
t s t

In Theorem 2.1 below we will prove that the unique solution of

(2.1) is given by the so called "evolution or mild solution"

t
= T'(t,0)y + fT'(t,s)dM

t 0s

where (T(t,s) :0 s -it <-! is the evolution system on ¢ adjoint

to the (C0 ,1)-reversed evolution system {T(s,t) :0 s t < on , 0

2and M is a V'-valued martingale such that E(M 1]) < for all
t

NeS
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t -0. The above V'-valued integral is defined for each T 0 and

2_
0 -t T as the sum of the L -convergent series

t t t
(2.3) (fT'(t,s)dM4)[ , ] = fdM [T(s,t)O] = f -T(s,t) , > 3M [0 0 j=l 0 T

where pT >qT is such that the injection - is nuclear, q. isT TPT qT I i

as in Proposition 2.1(b) and j- -  is a CONS in :p. The evolu-

tion solution has the important property of being a "'-valued semi-

martingale, i.e. for each 3 . 't [ ] is a real valued sei-LL.r- gale.

We now present the main result of this section concerninq the

solution of the stochastic evolution equation (2.1).

Theorem 2.1. Assume the tollowing conditions:

(Al) y is a €'-valued F0 measurable random ele ent such that for
2

some r >0 E:- 12 <"-

0

(A2) M = (Mt t-0 is a V'-valued martingale such that M, =0 and
2

for each t _0 and •, E(M t ] 2
t

(A3) {A(t) } is a family of continuous linear operators on
t 0

satisfying the following two conditions:

(a) {A(t)} is stable on (D.
t 0

(b) For each n -0 there exists m -n such that for each t :0

A(t) has a continuous linear extension from to and
m n

the map t -A(t) is L(¢m,c(n) continuous.

Then the stochastic evolution equation (2.1) has a unique V'-valued

solution r = ( tt0 given by the evolution solution
t t>._0
t

(2.4) = T' (t,0)y + fT '(t,s)dM
0 s

. 0
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where (T(s,t) :0 s st <-I is the unique (Col)-reversed evolution

system generated by {A(t)!}tIO and given by Theorem 1.3. Moreover

has the following properties:

Cl) ~ D([0,-) :V) a.s. and for each T>0 there exists PT>0

such that c. D([0,T] :(' ) a.s. and

2
E( sup I~i o

(2) -1 given by (2.4) satisfies

t
M + {T'(t,0)y + fT'(t,s)A' (s)M ds}t 0t 5

t

1 = M [,P] + {y(T(0,typ] + fM [Acs)T(s,t) Ids} for all E

Proof: By condition A3 and Theorem 1.3, the family {A(t)} t -o

generates a unique (C.1 1)-reversed evolution system T~s,t): 0 sst <-

on ~

For T >0 let qT given by Proposition 2.1(t) (we take q -r0 ) and

define

I (w 2 MT ED([0,T]h ' ; }f(D E2 Y <y w

(2.5) CT(wJ) sup TM (,U
0~t~T

TThen by Al and Proposition 2.1(b) P(Q21 =1 and C T(w) <~ for

w'f<I T Moreover, using (1) in Theorem 1.3 and A3(b) there exists~1

rT ~such that

qT

(2.6) JA(s)T(s,t)$j M e K '~for all 0-is-t- T
qT qT qT' rT

* whe re

A'.A-XK~ ~ ~ *- - ~ . - *
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K sup IIA(t)I<L( , )  .

T  0 tST rT q

It is important to observe that if =q independent of T,

then rT =r also is independent of T and (2.6) holds, although the

constants M, a , and K might still depend on T.

The proof of the theorem is completed in several steps.

Step 1 We first show that for each t > 0 the map

t
fm f [A(s)T(st)p]ds
0 Os

is continuous and linear on D a.s.: Let T >0 be fixed but other-

wise arbitrary and w E Using (2.5) and (2.6) we have that for

0 t < T

t
(2.7) IfM ( u) [A(s)T(st)4Jds - C()TNI(T)1r for all t

a T

T ) Then for .Ql and 0 -t -TwhreN () q T qT

t
(2.8) Yt(.)L[YI : M (w) [A(s)T(s,t) ds E

t 0

defines a continuous linear functional on (, i.e. Y t S'

T
Moreover from (2.7) we have that for u T

(2.9) sup Yt(w) [i 12 <2(T 2 2  2T) j for all 5
Ost<T - T TT)Tr T

Since T >0 is arbitrary then for each t >-0 Y t A' a.s.

Step 2 For each T > 0 there exists PT > r T such that

T
Y : (Y :0 -t T C([0,T] : ' ) a.s.

t T

,0
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T
Let T >0, w E21 (we will sometimes suppress w in the writing) and

1

t0 ,t [O,T]. Using Lemma 1.1(a) it is not difficult to show that

(assuming to <t)

t 0 t t

Yt[1 Y [p] = f f M u[A(u)T(u,s)A(s)p]dsdu + f M [A(u)T(u,t) ]du for all
t t0 0 to t0

Next using (2.7) and condition A3(b), there exists fT >rT such that

for some constant N2 (T)

(2.10) !Yt() [ I¢1 -Yt ())[]! I CT WN2 (T) t-t0t 0 for all *

Then Yt (w) [ is continuous in 0 t -< T for all p t D, w K -,.

Let pT >rT be such that the injection D PT (Dr is a Hilbert-

Schmidt operator and let {p.} jicr be a CONS for P PT Then from

(2.9) for w r T

2 2 2 2 2
4 (2.11) sup (Yt(w) [p.]) CT w()T l T) 7 ., < -j=l 0<tsT j-l JrT

Then using the continuity of Y (w)[P], (2.11) and the dominated

convergence theorem we have that for w .- T and t,t 0 ' [0, T]
10

J0

lim IYt(w) -Yt0()2 = im r (Y -Y ( 2 0.

tt0t t0 PT t-t 0 j= to 0

Then we have shown that for each T >0 there exists PT >rT such

that yT ( TC([O,T];P' )for T  =1.
• PT

Step 3 We shall prove that there exists a P'-valued process t

satisfying (b) in Definition 2.1.

Let T and T n=n n 1 then P(,.) =1, and from Step 2 we

have that

.. - ..-
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%4

Y ( ) E C ([0 , )  : V' w E i "

Let 2 {w E :M.(w) ED([0, ) : f') :7-y ( )l < a . Then by

(Al), (A2) and Proposition 2.la(ii) P(22) =1. Let 2* 1 ,2,2

then P(2*) =1 and for wE *

(2.12) t(w) = T'(t,0)y(uj) + Y (w) + M (w)
t t t

is a well defined element on ' for each t ?0. Since

Y. EC([0,-) :') a.s. and M. ED([0, ) :') a.s. then

, D([0, ) :') a.s. and

t

(2.13) t[,1 = y[T(0,t)p] + fM s[A(s)T(s,t)p]ds + M t[] for all ( , t-0 a.s.
0

NexL let w EQ2 *, t >0 and EI) (we will suppress w in the writing).

Applying Lemma 1.1(a) to B =I, F =y and u =0 we have

t
(2.14) y[T(0,t)p] = Y[P] + fy[T(O,S)A(s) ]ds

0

and taking F =M , B =I in Lemma 1.1(a) we obtain

t -
(2.15) Mu[A(u)T(u,t)p] Mu[A(u)o] + fMu[A(u)T(u,s)A(s)¢]ds.

Using (2.14) and (2.15) in (2.13) and applying Fubini's theorem

we obtain

t t s
t ] = y[Q] + fy[T(Ot)A(s) ]ds + f{M [A(s) ] + JM [A(u)T(us)A(s) ]du'ds + M -
t0 0Os 0 ut

t
yl ] + (<s[A(s)¢lds + Mt -.

0 t

Then the process t given by (2.12) satisfies (b) in Definition 2.1.t,
Observe that the map (t,w) -- (w) is B(:')/B(R)&F-measurab1e

and for each t, is FM'-measurable where
t .t

%--
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F I = -f{y[t5] ,M fI :0 ! s t - }
t s

Moreover, (2.12), Proposition 2.1(b) and Step 3 give that for each

T >0 there exists PT > 0 such that

7 D([O,T];' ) a.s.
" PT

Step It remains to show that t defined by (2.12) and satisfying equation (b)
t

of Definition (2.1), is given by the expression (2.4) so that the latter is the re-

qfuired solution. Uniqueness follows easily from Proposition 1.5. For each TO let

PT >qT be such that the injection DPT q T is a nuclear operator.

By (A2), (2.5) and Proposition 2.1(b)

(2.16) E( sup (Mt [])2) E(CT ) 2fol

O!StST

First observe that the series

t
(2.17) - <T(s't) '.J dM [ .]

j=l 0 T

converges in L2 (ii) for t . For, using (2.16), conclusion (1) of

Theorem 1.3 and the nuclear property, we have that for 0 t T

and t - ,

t t" iE -T (s, t)i,Sj dM T: ] T(s, t). k p d M  [rk

j=l k=l' 0 PT s J 0 T sk

t 2 t
El T(st) ' dM[ ]"E2 T(st) * 2 d M[j=1 k=1 0 ' T 0 T

M2  2 e 2 {E-M[ T EM[k] T
PT -T

M2 2 e P 2EMT[.EMTk 2 I

PT PT TT 2

E(C2)M 2 e PT 2
TpT PT j=1 j r T

• ° " ' • • . . . • + , ," "m .* ." - . ," . - - - - - , " -+ .
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Next using the backward equation (1.6) and Ito's formnula, for each

E - and j _ 2. we have

t t
(2.18) ;<T(s, t) , pdM [j] = t[< ,j.T ] - !M [j] -T(s,t):, p ds

a3 P~d J PT ~ sp

t
Mt[Pv, > I.] + fMs ( )T (s, t) ]ds.

PT0 T)'

But
n 2 2 n2

(2.19) E (Mt[ ]  Mt E ( T) < -
3 1 j=l

2 2E(C ) - j < 2

Then from (2.17), (2.18) and (2.19) the series

= t
fM [<A(s)T(s,t) , > I ds

j=1 0 P

converges also in L (2) and therefore, for each E

t t
(2.20) l f<T(st) , > d4[J] = Mt] + Ms[h(s)T(s,t)]ds a.s.

j=l 0 j>P 0 M[~sTstp

The assertion now follows from (2.13), (2.20) and (2.3).

Remark 2.1.

a).-From (2.10) we have that for w E2T Yt (w)V[ ] is a continu-

ous real valued process of finite variation. It is not difficult

to prove that y[T(0,t)s] is also a continuous process of finite

variation on each finite interval. Then since they are Ftadapted

they are predictable and from (2.5) Vt] is a real valued special

semi-martingale with decomposition

- [] = M [I ] + V [ ]tt t

where V [p] = y[T(0,t) ] + Y [D].
t t

.......................k.-.-.... . . .
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b).-If the €'-valued martingale M is continuous then (i) in

Theorem 2.1 holds if we replace the spaces D([0,);¢') and

D([0,T]":' ) by D([0,'): 1') and C([0,T]: :' ) respectively.-T ' T

We now obtain some easy but important consequences of the

above Theorem.

Theorem 2.2. Assume (AI)-(A3) of Theorem 2.1 and that there

exists q -,0 such that M - D([0,) : ') a.s. (or C([0p,) : g) a.s.).
-I ' q

Then there exists p >q such that the solution - = (t )t_0 of (2.1)

satisfies the property . D([0,,-) : ') a.s. (C([0,-) : o) a.s.

respectively) and if j l c 'c is a CONS in then

t

S[ = [T(0,t) ] + r <T(s,t) ,V > dM [:j] - , t 0 a.s.
t j-- 0 s

Proof: It was already noticed at the beginning of the proof of

Theorem 2.1 that if q T does not depend on T neither rT nor P. do.

Then the theorem holds taking p >r q such that the injection

- q is a nuclear operator and given q, r is determined by condition
p g

A3 (b).

Remark 2.2. The condition on M of Theorem 2.2 can be obtained if there

exists e such that for each t >0 there is a 9 >0 and

E(M [f]) 2  9 t for all ¢ < for example if E(Mt ]2 =

' where Q(" ,v ) i a positive defin' tc continuous bilinear for- on

Corollary 2.1. Assume yo is a V'-valued Gaussian element independent

of the V'-valued Gaussian martingale with independent increments

Mt (M0 =0) and the family iA(t)1t, 0 satisfies condition (A3) of

Theorem 2.1. Then the solution = ( t) of (2.1) given by Theorem

2.1 is a '-valued Gaussiar u:'-cess.

,1
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Proof: We only notice that for each ( D, from (2.13) we have that

t[p]) t0 is a real valued Gaussian process.

Corollary 2.2. Assume (Al)-(A2) in Theorem 2.1 and let A be a

continuous linear operator on 1 which is the infinitesimal generator

of a (C0 ,1 )-semigroup {S(s) :s 20} on D. Then the '-valued homo-

geneous stochastic evolution equation

d~ t = A't dt + dM

t ~*t t

'0

has a unique solution = C t) given by the evolution solution
't t.'0

t
(1) : = S' (t)y + fS' (t -s)dMt s

and satisfying (1) in Theorem 2.1. Moreover, ' is given by

t
(2) = M + {S' (t)y + fS' (t -s)A'M ds}.tt t S

0

If in addition M ED([0 , ) : c') a.s. (or C([0,-) : ') a.s.) for some' q q

q >0, then there exists p >q such that - D([0,) : ) a.s. (or

C[0, ) : ) a.s.) and if {1)Jjjl is a CONS on ¢ ID

t

(3) -[] y[S(t)t] + 7 f<S(t -s)sy dM s t 0 a.s.t j=l 0

The corollary follows by noticing that a (C0 ,1)-semigroup on is

a (C0 ,l)-reversed evolution system. In the last statement p should

be taken such that p >e >q and , - is a nuclear operator, and

is such that A~j K! for all and some constant K.

Finally we consider the solution of the perturbed stochastic

evolution equation (2.2).

-" 1



Theorem 2.3. Assume (Al)-(A3) in Theorem 2.1 and let . n :n0

be the sequence of norms on I such that fA(t)} is stable with
t 0

respect to them. Let {B(t)t 1 0 be a family of continuous linear

operators on D such that there exists q0 - and for q 'q0 and t _IO

B(t) has a continuous linear extension to I q and the map t -B(t)

is L(I, q i)-continuous. Then the '-valued perturbed stochasticiq '' q,

evolution equation (2.2) has a unique V'-valued solution = (t)t.0.

given by the evolution solution

t
- V' (t,0)y + fV' Ct,s)dM"t S

0

where {V(s,t) :0 _s !5t <-I is the (C0,i) -reversed evolution system "

generated by the family {A(t) +B(t)} given by Theorem 1.4. In

addition to (1) in Theorem 2.1 has the following properties:

(a) is given by

t
C = M + {V' (t,0)y + fV' (t,s)(A'(s) + B'(s)) M dsi.

tt0 s

(b) satisfies the integral equation

t
ie-T'(tS)B' (s)s ds + nt t 0 a.s.

i.e.
t

s [] t [B(s)T(s,t)pIds + n tis for all < t -0 a.s.
' 0 s

where t is the unique solution of the unperturbed stochastic

equat ion

d t = A' (t)n dt + dM
tt t

0

and {T(s,t) :0 -s -t <-1} is the (C0 ,l)-reversed evolution system on

generated by rA(t)}

.-. . ."
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Proof: Under the conditions on the family iB(t)} and using
t 0

Proposition 1.4 the family {A(t) + B(t)} satisfies (A3) in

Theorem 2.1. Theorem 1.4 gives the existence of the (C0 1l)-reversed

evolution system +V(s,t) :0 <-s <-t <-} on . Then Theorem 2.1 gives -

the first part of the theorem and (a). Finally using (1.29) in the

evolution solution we obtain (b) .

Remark 2.3. The main result of this section, Theorem 2.1, has been

proved for '-valued martingales such that E(Mt[¢2 <c for all
t

t 0 and x < . We have been able to relax the requirement of square

integrability and show that the stochastic evolution equation (2.1)

has a unique solution. The details of the proof as well as the

definition of the corresponding stochastic integral will appear else-

where.

.

* .4... a
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3. EXAMPLES

In this section we consider special cases and examples of sto-

chastic evolution equations and stable families of operators on

countably Hilbertian nuclear spaces.

The first two examples illustrate two important facts. 'irst,

they are instances where the original problem is given on a Hilbert

space H and an appropriate countably Hilbertian nuclear space * can ce

constructed where the problem is solved in a suitable way; second>',

they are examples where the faamily of operators .A(t) is stble

with respect to the sequence of :-compatible Hilbertian norms on

and A(t) is of the form A +B(t) as in Corollary 1.1. These two

examples fall within the following framework: Let (H,<.,.>.) be a

real separable Hilbert space and -L a closed densely define(

self-adjoint operator on H such that <-7 :,> 10 f or each ',- i L

Let S(s) s 0 be the C0 -contraction semigroup on H generated by -L. Furthernrre

assume that some power of the resolvent of L is a Hilbert-Schmidt

operator on H, i.e.

(3.1) Z r1 such that (NI +L) is Hilbert-Schmidt.

The following construction of a countably Hilbertian nuclear space

is well known (see [6]): Condition (3.1) implies that there is

a complete orthonormal system jl in H and 0 1 2 such

that

(3.2) L = .

A' Define

-4,
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(3.3) (D H :1(I +L) 2 < for all r IR-

2 r 2 ,
= { H : + r +) ,> < for all r IR

j=l Jj H

34) r + ( +X.)< j>H<)' >H for all r R I,,-r j=l

(3.5) icr rr rD .

Let (D be the " r-completion of I. The following three facts are
rr

easily verified (see [61:

(a) The locally convex topology on ( induced by is also

given by a countable sequence of norms . n -0 and

( ; 'I n =0,1,2,...) is a countably Hilbertian nuclearn

space.

(b) For each r IR

(3.6) IS(s)pl - 1I for all ¢ c(, s 20.r r

Then S(s) L(¢,¢) and extends to a strongly continuous contraction

semigroup on each rD
r

(c) (D c 0(-L), -L¢ c_( and

(3.7) -L - for all -( D , r -IR.(3.7) -L Irr+l

Hence denoting the restriction of -L to by A, we have A L(;,;).

By (3.6) and Theorem i.1 the restriction of S(s) to ;, also

dcnotcd by S(s), is a (C0 ,o )-semigrou on W. w now rrnve that A is

the infinitesimal generator of S(s) on .. Observe first that

, ° . • . . - . . . .. . .- . . . . . . . . .. . -. .- , ,- - . . . .o - .• . . . . ..
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A1 X > for al

S (S)~ 7 e 3 < j > H for all s >, 0.
j~l

Using (3.4) and the last two expressions we have that for .*,

r IR and s !0

1 2 2r 1 2
L1At - (S (S)~ ~~ (1±'.) <A$ --(S (S)i ~s r js j ' H

j=l j HR j s

N'Next, for j >-1 and s ?0, from the easily verified inequality

I J-1)) 2 2 4.l)2
+-( s e 4 X.D 4( 1

we have for ~ ,r cIR

IA -(S (S) -t)l 2< 4 + 4-~ 2
s r jl~ --

I~

Thus since N. +-I(e 1-1) 0 as s -0, by the dominated conver-
D S

gence theorem,

1 2
iA( -(S (s)~ 11H - 0 for all ~ ,r IR ,

s-

i.e., A is the infinitesimal generator of the (C0,l)-senigroupi

(S (s): s 0j on ~.In this case we say that the triple ( ,li,A)

is a srei;a~ ?orat .1-' 1 7"~ If in addition there exists a

family B(t)! - of densely defined linear operators on H s'u-ch

t %0
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that for all t 0O, B(t)(D - and {B~t),It.,O satisfies the assump-

tions of Corollary 1.1 with respect to the Hilbertian norms In'

by Corollary 1.1 the family {A+B(t)}t 0 is stable on and

generates a (C0 ,l)-reversed evolution system satisfying the

integral equation (1.31).

Example 3.1. (,-hristensen and Kallianpr [21, Kallianpur and Wolpert [7])

Let D-vH-' be a rigged Hilbert space on which is defined

a continuous linear operator A : -(D and a strongly continuous semi-

group {S(s) :s 01 on the Hilbert space H such that the following

conditions hold:

( i ) S ( S ) ¢ _(D s >- 0 . .

(ii) The restriction S,3)1 :4 -4) is 4 continuous for all s --0.

(iii) s -S(s) is -continuous for all D."

(iv) The generator -L of S(s) on H coincides with A on

A semigroup {S(s) :s 01 satisfying the above conditions is called

compatible with (t,H,V') or equivalently we say that ( ,H,S(s)) is

a comratib Ze family (see [6]).

Consider the stochastic differential equation

(3.8) d t = -L', dt + B'(t) 7tdt + dM

70 = Y."'0

The unperturbed equation, i.e. B(t) =0 t !0, is a model used in

neurophysiological applications by Christensen and Kallianpur [2]

and Kallianpur and Wolpert [7]. The last named authors have solved

S%

0"°

.................. ~ .1

S. . . .

. . . . . . .. . .
-s."-"-- -" "".-"- i -". -; -"."-'- ii -%l - " " i'-...-..-....i..? - .- ........-.... 2......... . - ..--. ...-....-......... iiii?;
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(3.8) for the case of a special compatible family, B(t) =0 t '0 and

when M is a '-valued stochastic process with independent incre-

ments defined through a Poisson random measure, namely

t
(3.9) M = a',(x)N(dadxds)

0 1R

where N(dadxds) is a compensated Poisson random measure with

variance u(dadx)ds, for some a-finite measure u on IR-X. In [7]

it is shown that when M is as in (3.9) or a '-valued Wiener oro-

cess, both Mt and the solution of (3.8) belong to the space

D(IR+ :1') a.s. (or C(IR+, ') in the Wiener process case) where q

is independent of t. This is a special case of Corollary 2.2.

Example 3.3 in [13] and Example 2.3 in [61 show that we cannot ex-

pect a solution lying in C(IR ;') a.s. for q independent of t.q

In the case of a compatible family and when M t is a '- valued
2

martingale with E(Mt [¢) <- for all E D, t -0, the stochastic

evolution equation (3.8) with B(t) =0 t >0 has been solved in

Christensen and Kallianpur [2]. Their result is Corollary 2.2 if

S(s) is a (C0 ,l)-semigroup on ¢.

It is important to observe that in neurophysiology the kind of

Derturbations that occur are more likely to be nonlinear rather than linear.

Example 3.2. (Kotelenez [8])

The stochastic evolution equation of this example has been

considered by Kotelenez [81 in connection with fluctuations near

homogeneous states of chemical reactions and Gaussian approximation

to nonlinear reaction diffusion equations.

.%
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Let C = =(x=,..., x) _ :0 -x. 1 i=1,..., n} and- 1 n 3...-

let R(x) m =0 cjxj be a polynomial in x EIR where CO >0 and C. 0

j -2. Consider the nonstochastic partial differential equation .d,

tX(t,x) = DAX(t,x) + R(X(t,x)) 4

(3.10) X(t,x) = 0 if x. =0 or 1 1[1
X(0 x) >0 --

where A denotes the Laplacian operator and D > 0 is a diffusion

coefficient. The solution of (3.10) is the concentration of one

reactant with reflection at the boundary (see [81).

Let H =L (C) be the real separable Hilbert space of square0 2

integrable functions on C with inner product

<¢,f> 0 = fp(x),P(x)dx

Let A denote the closure of DA in H with respect to the reflecting
0

boundary condition in (3.10). It is well known that A is a self-

adjoint dissipative operator on H. Moreover if

/2cos(Zi Xi ) z. i1
(3.11) qt (xi) =

11 Z. =0
1

n
then z =fi=lq is a complete orthonormal system of eigenvectors

1
of A in H0 (where f = (eif'... I ) is a multiindex) with eigenvalues

2 n 2.
(3.12) -' -DT 2 2

Furthermore Z(1 r <- for r >n/2. Then a countably Hilbertian

nuclear space can be constructed as in (3.3) such that for r ..IR

S '

--. ' ., _ ,,, -4.,...- _..-----....,4- -.,. , . ...'. -'- . - . *..' -. . 4.'- . .. . -: . ' .-..- -.- , - . ..- 4-, -
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2 (313)22 2r(3 .1 3) r  
=  (i + X )"

and the injection p ¢- q is Hilbert-Schmidt for p >q +r l , rI =n/2.

Thus (4,H0 ,A) is a special compatible family and the restriction of

A to P (also denoted by A) is the infinitesimal generator of a

(C0 1 ) semigroup {S(s) :s -0} on D. The space is the nuclear

space of all infinitely differentiable functions

i in
(lx) on C such that p(x) and -. ..- n- ( x) for t. odd, some i, are

zero if xi  is 0 or 1. 
_

Consider the stochastic evolution equation

d t  (A'+B'(t)) tdt + dMt
(3.14)

0= Y .

where y is an F -measurable '-valued gaussian random element
0

independent of the '-valued gaussian martingale M = (M t)ts0 with

covariance functional

tAS n M(3.15) E(Mt[:]Ms[%I) = / <-2D X 3iX(u)3., + ! c iX(u) J , du,
0 i-l j--0

B(t) =R (1) Wt) for X(t) =X(t,x) the solution of (3.10) and
(1) (1)

R (x) denotes the derivative of R(x), x ( IR. R (X(t)) acts

as a multiplication operator on H0 , i.e.

(B(t)f) (x) = R (I ) (X(t,x))f(x) f -H o*
_ __ 0

Theorem 3.1. Assume the initial value X(0,x) of (3.10) satisfies

the following conditions:

(i) 0 X(0,x) 3 where 3 is some positive number such that

R(x) '0 for all x -3
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(ii) X(0,x) is an infinitely differentiable function in x,

with bounded derivatives of )ili orders which vanish

if x. =0 or 1.

Then the stochastic evolution equation (3.14) has a unique V'-valued

solution = (t)tO which is a '-valued Gaussian urocess

given by the evolution solution

t
= T' (t,O)y + fT' (t,s)dM

t 0 s

and satisfying (1) and (2) in Theorem 2.l, where T(s,t) 0 0-s

is the (C0 1 ) reversed evolution system generated by the family

{A(t) =A +R (Xt))}t. Moreover,for each p >n/2 +1

. EC([o, );p) a.s. and

tp2

t[ ] = y[T(t,0)0] + (l+;) 2 p  f<T(t,s) , [> pdMs S, t 0 a.s.
~0

Proof: We shall verify that the conditions of Theorem 2.2 are

satisfied. Since (4,H0 ,A) is a special compatible family then

A(t) =A, t ?0 is a continuous linear operator on D generating a

(C0 ,1 )-semigroup {S(s) :s -0} on . Then we only have to check

that the conditions of Corollary 1.1 are satisfied by the family

{B(t)}

Using conditions (i) and (ii) above, by Theorems Al and A3

in [81 we have that the solution X(t,x) of (3.10) is a continuous

function in t, infinitely differentiable in x with derivatives

in x continuous in t and

(3.16) 0 -X(t,x) <_ x C t >0.
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Next, it is shown in Lemma A.4 in [8] that for each q zO the norm

'., defined in (3.13) is equivalent to the norm

q
i = f (3 (x)) 2 dx )< S

q !OZj<qC C-q C

where =t tI +1 + n and 3 x 3 .. ) Then for each q -0

1 n

there exists a constant a such that if D and t --0q

2B(t)q a qB(t) = a f (3 (R( I (X (t, x))D (x)) 2dx
q q0qI<- q Cq

and using the Leibniz formula and Schwarz inequality we have that

for some positive constant d
q

(3.17) q 1 d f( L ( R1) (X(t,x)) 2 ) 2 Z -i (x))) 2)dx.
q q o iq i i -

Then using (3.16) and since R(x) is a polynomial in x of degree m

with constant coefficients, there exist positive constants

d. (m,q) i =1,2,3 such that for any t >01

(3.18) IB(t)I2 < d (m,q) L f ( (x)) dx
(3 )iBJq 0q C i-

< d2 (m, ) 1j 
2  d (m,q) 2

2 3 q

i.e. B(t) maps into and can be extended to an element in L( , 2 )for ( .

In a similar way to (3.17) and (3.18) it can be shown that

for t,s c[0,')

2 2 i (1()
B(t) B(s) 2 qD d (mq) ? ( (R (X(t,x)) -R (X(s,x))))dx

qq 0 <_ q 4 q _

.. .........
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Then using the continuity in t of the derivatives of X(t,x), the

fact that R' is a polynomial and the dominated convergence theorem

we have that the map t -B(t) is L(¢ ,D )-continuous for all q -o.
q q

Then the conditions of Corollary 1.1 are satisfied and the existence

of the (C0 ,l)-reversed evolution system T(s,t) generated by the

family {A +B(t)}t> 0 is established.

Next since Y and M = (M ) satisfy (Al) and (A2) respectively
t t2:0

in Theorem 2.1 then the first part of the theorem follows as an ap-

plication of Theorem 2.1.

2
Finally since E(M [ !])2 <tK l,  E, t 0 for some positive

constant K, the "'-valued gaussian martingale M has a version . -

in C([0,-); p) a.s. for p >n/2 +1 (see [6]). Then from Theorem 2.2

E EC([0,-);,') a.s. and the last statement of the theorem follows.

The following is an example where the family of linear operators (A(t))t_>0

is not of the form A+B(t) nor a special compatible family.

Example 3.3 (Interacting diffusions).

The nuclear space valued stochastic evolution equation of this example

occurs as the fluctuation limit for interacting diffusions and it is a

perturbed equation of the type (2.2). The study of the limit of interacting

particles has been done by McKean [11]. Hitsuda and Mitoma [4] and Mitoma [14]

amongst others.

%~ %°%

S w
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For n>l let Y (n) (t) = (Yln)(t) .... be an n-particle diffusion-1 n .

given by the real valued stochastic differential equation
Y~n)t) "k 1 n (n)( (n)

-n= + Iot a(Y, (s). (s))d
k k n j=1

I' b. (() J s))ds (k = 1. n)

n -:

where (@k' Wk)k l are independent copies of (-w) and -r is a random variable

such that E(e )< , for some c' 1:.A n1', :1. .. t c -r, vaIui : r I..-. .

motion W= (wt)t>O. The coefficients a(xy) and b(xy) are bounded

C -functions in (x,y) with derivatives in x bounded in (xy).

Consider the measure valued process
n

U(n) (t) 'i 6y 0n J . = ) ( t )

O

where 6 is the unit mass at x. McKean [11] has shown that for each t>O
x

u(n)(t) - !' t (i I r'c ih i

where U(dx,t) is the probability distribution of Zt  that satisfies the real

valued stochatic differential equation

dZ t = a(Z t t)dW t + 3(Zt ,t)dt

and

ca(x~t) : la(x,y)U(dy,t)

Pg(x,t) I= J b(x,y)U(dy,t).

Moreover, it is also shown in [11] that U(xt) has a density u(x.t) and that

a(xt), P3(x.t) and u(x,t) are C -functions on RxIR.

Let

Sn(t) = 1/2 (U(n)(t) U('.t)).

, ° o . ° .. - o , . , , , • • . . . - , .. . . • . . . - . - ~ . -. . . .. . . . . .. . .- • . °
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Hitsuda and Mitoma[4] have shown that the measure valued processes S (t)

converge weakly to the solution f = (t)t>O of the nuclear space valued

stochastic evolution equation

(3.19) dft = A'(t)f dt + B'(t)f dt + dM
t t t

fO=

where for as defined below
1 2(2) (1)

(3.20) (A(t)o)(x) = a(x,t)20 (x) + O(xt)o(  (x) and
2(

(3.21) (B(t)o)(x) = 4 b(yx)0(1)(y)u(y,t)dy
+ I4 a(yt)a(x,y) (2)(y)u(y.t)dy for

Mt (Mo=O) is a zero mean 0'-valued continuous Gaussian martingale with

covariance functional

E t Sr (1 ) 0(1)(xla(× r)2u(d ,r)dr e (P
3.22~1'(t[I]Ms[02]) = P0 " ( 2 , u r l2 e

and -is a V'-valued zero mean Gaussian random element independent of M. As

pointed out in [4] the nuclear space appropriate to the problem is given by the

space P of real valued functions * such that * 6 (P if and only if #4p 6 Y. (the

space of rapidly decreasing functions on P), where

P(x) = SIRe p(x-z)dz

and p is the usual mollifier

p(x) = {c exp(1/(l-Ixl 2)) lxi <

0 lXI > 1.
Observe that P is a modification of Y with the following relations among the

norms defining their corresponding topologies:

(3.13) 111In = I 4IHn,

(3.24) 101n = IP*n,f

V5

*5* 5 -. 5.. .. . . - - 5~:**5**
-l .. 5.5 S N' 55. .. *
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where for f 6 Y

2 n k(3.3)= sup sup (l+X ID f(x)l n > 0
O<k<n xeIR

2 n 22n k 2

(3.26) If 2 -
1R (l+x) IDf(x) dx n>O.

k __O

From the well known relation between the norms on Y, we have that for all

n>l there exist constants c and d such that for every 0 E &"

n-- n n "-.*

Some brief comments on the relationship of our treatment of Example . with

that of Mitoma [14] ar, in order. In [14] I. Mitoma has found, in our

terminology, the (C .1)-reversed evolution system T(st) on P generated by the
01

family {A(t)}t>o given by (3.19). His main tools are several results of Kunita

[10] for stochastic flows of diffeomorphisms of ER, including Ito's forward and

backward formulas. He then proves, by the method of successive approximations,

that the stochastic evolution equation (3.19) has a unique solution. An

explicit expression for the solution is not given, nor is it written as an

evolution solution. In the theorem below we will prove the existence of the

(C0 ,1) reversed evolution system T(s,t) on 0 generated by {A(t)}t>O , by using

our Theorem 1.3 and regular Ifo's stochastic differential tools. In doing this

we show that {A(t)} is a stable family of infinitesimal generators of
S00

(C0 ,)-semigroups on P. We then use the perturbation Theorem 1.4 to find the S

(C 0 .)-reversed evolution system v\(3,t) 7,nerated by tn famil': -A(t)+1 (1)

using Theorem 2.2 we are able to write the unique solution of (3. 10) as an

evolution solution.

Theorem .3. -. Under the above conditions on a(xy), b(x,y), and M (Mt)tO

there exists a unique (C0 1)-reversed evolution system {V(st): O<s~t<-} on ¢

such that the stochastic evolution equation (3. 19) has a unique O'-valued

a 4"" ' ' '* ' ''' ' '% % q , °' ' " "% " " '"-' - ''-"e" " -% ' -" % ' " " " -"-" -' * ' -% %.' % . . . 0'
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solution which is a O'-valued Gaussian :

evolution solution

,= V(t o) + 0o V'(ts)dM

Moreover for any p>6 6 e C([O,'):AW) a.s. and for t>O
p

t
(3.2 7) [ t <V(s't),.> ) dM [0J] for all 0 ,

j=l .jp s j
where { . )j c -i- 3 comi 1 r,:, , 

.j 

°

In order to prove the above theorem we will verify the conditions of

Theorem 2.3. We first prove that the family {A(t)) t0 is stable on P.

Proposition 3.1. The family of operators {A(t)}t>0 defined by (3.20) is

uniformly stable on P with respect to the norms given by (3.23).

Proof. We first show that for each t0 A(t) maps P into P and A(t) 6

Let Oe* and nO, then from (3.20) we have that

Dk(,A(t)o)(x) = D k((x)a(x.t) 2 (2)(x)) + Dk ((x)(x,t) (1)(x)).

Then since a(xt) and (x.t) are C (Rx[R+) functions with bounded derivatives in

x of all order, for eachT>O there exist constants KI(n,T) i=1,2 such that for

Ok~n and 0<t< T
k k

(3. 28) IDk (4A(t) )(x) I KI(nT I k ID'(x)o(2 (x)l + K2(nT) E IDi )(1)(x)[.
1 =0 i1=0

Next it is not difficult to show that for each P>0 and n>O there exists a

constant c(en) such that

110(e)ll _ c(en)Il1II1 for all 0 6

Then using (3.23) and (3.25) we have that for each ->0 and n 0 there exists a

constant K3 (n, T) such that

(3.29) sup jfA(t)OI n n K3 (n.T )IIn+2  for all OC(
O<t< T

which implies A(t) e 1(0,0) t0.

S'
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Next let tO be fixed but otherwise arbitrary and for 6 'P and x E 2

define

(3.3) (S t(s)o)(x) = E[O(Xt (x))] s>O

where

( A (x) +s a(X t (x).t)d +s , ("X.).t)dr
s o r 0 r

and {2 > is a one dimensional Brownian motion. Observe that since a(x,t)

and 13(x,t) are bounded C -functions in RxR,+ then (3. .1) has a unique solution.

Also since for some constant K>O

(3.32) a(x t)I < K, Ip(xt)! < K x F- ER, t0,

using the fact that p-l(x)I deI x l x 6 ER (some constant d>O) and Lemma 5.7."

in [5] we have that for 0 e (P

_ dllVPll 0. EeIXs(x) 1l< s 0, xFL, t>0,

i.e., (3.,30) is well defined. Moreover S t(s)O is linear in P and satisfies the

semigroup property St(s 1 + s = St(S)St(s2).

Next applying Ito's formula to (3 31) we have that for 0 e P

O(Xt(x)) = Ofx'+f X()aX()td,+l(~~)X~)d

and taking expectations in bot-h sides of the last expression and using (3.[t0)

we obtain that for 6 ( P and s>O

(3.33) (S t(s)0)(x) = O(x) + fo(St(r)A(t)0)(x)dr.

Next we shall prove that S t(s) maps 4> into 4 and that it is a

(Co,1)-semigroup on P with infinitesimal generator A(t).

Using (3.'3) and (3.25) we have that for 0 6 (P and n>O

(3.34) 1S~s (SH = sup sup (l+x2)nI Dm ( St(s) )(x)
St n O<m<n x6ER

Applying Leibniz formula we have that for O<m<n there exists a constant e(n)'0

such that

mIDm(4St(s)O)(x)l e(n) 1 IDr (x)JIDm-r(S (s )()
-- --0

.............................""-......"".."..." .. "',- -'. '""" . . "".
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and it is not difficult to show that there are positive constants c(n) and d(n)

such that

(3. 3 5) ID r#(x) I c c(n)e-x x61R, O~r~n

and

* 3.~ IlDr 4 -l(x)l d(n) e .x X&R, O<r<n.

Then for xEAR and 0(m<n

(3.3-7) 1IDm (PS t (s)O)(x)l e(n)c(n) .2 IDm r r(S t(s)o)(x)I.
r -0

Next using again Leibniz formula and Holder inequality we have that for 0 -k<m-,n

IDk(S (s)O)(x)l = k -l (Xt(x)))l

t t
r,1 Xt 121 2 2!(,o)Xt(xfl2)/

(338 en)2 EID (EIDJ

aFrom (3. 3) hand Lema 5.7. i~n [57eoti

2I~tx) I eI2 sX t>0 xeER

Ee s l+ 2sK +2 +2K s SO 0 6

Then for 0 r~n and 0 O

rp-l(t x)2 1/2 IxI+1+(K+2K2 )

On the other hand from Lemma 2.3 in [10] there exists a positive constant

b(n) such that

1/2

F' 1 <_}/ b(n)s xCL2, s>0.
t222 2n[(l+IxXx)I J (1+x)

Then using the last inequality and (3.23) and (3.25) we obtain that for 0<r<n

2 (l+JX (x) I2
E[ ID r(44o)(X t (x)),jl /2 E E s 2)2n lr Xx(t (X))l2]l/2

< 2~~II for all OEA. s00.

(1+x )



Hence using (3.-39) and (3.10) in (3.38)) we have that for some constant f(n) and

~34iID k(S (s)O~)(x)j fn ee (KK jJ for all OEcA, xFi?, s>O.t (l+x 2)nn

NeXt LISin~ (3.4l in -)7; we have that for some positive constran t g(n) and

(xPSs 2n e' )s for all oeP xePR s>O.

Then from (3.3)and(3.4) we hav that for any t0O

(343 *tsO~ n J1 p I1  for all *,s00

whee r =log(g(n))(K+2K2) is independent of s or t.

We now ;rove that for each t 9,S(s) , s is a C ,-senidrrcu:

*s ,-s, then from (3.33) we have that for E

S (S) X) - S~ (s') (X) f(S (r) A(t)) (x) dr.
t sl t

*Hence for any G --m n

Dm ~'()( (s0(.) 5 C )(x JD~ (Y S t(r)A(t) ) (x)dr

a nd usino- (3.42) and (3.2?).,

(,( (s).(x) - S (s ):(x))*) p. K (n,T)j 'I rc K+K
t (I+-, )f n

Then for any n Cand

f re+2K )r
Cs:.-S C') n q~n)K3 (n,T) re~ d

* .35' ~ s

L L J k" 'e
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i.. ., ,S < s ' .' is a C -semigrc.: _. , and by (3.43) it is a "

on .

We finally prove that for each t kO, A(t) is the infinitesimal generator

of {S (s) : s } on : From (3.33) for 9 and s -'a)
t

SS(s -. %
tsS t(S) >  f S ft (r)A(t) dr.

0
1'.

Then for each n->0, using the continuity of the map s-'S (s) in we have that,
t

for each E ,-

A (t) -( (! JJ~) - -s r)A(t) dr n

StS t n0 1I

s fJ IIS t(r)A(t) -A(t) jI ndr 0~
0

as s- 0, i.e.,

A limit (S (s)O -) (limit in 4)) t 0.
at

sft

Hence A(t) is the infinitesimal generator on of the (C ,1)-semigrout -St(s):
0 t

Finally from (3.43) and Proposition 1.3 the family {A(t)}t-0 is a uniformly

stable family of continuous linear operators on D. The proof of the

ro: ositionl is comp lete.

Proof of Theorem 3.2.

Using (3.24) and similar arguments to those in proving (3.2S) and (3.29) 0

it is easy to show that for each T>O and n>O there exists K4 (n,T )>O such that

for t,t'e[OT]

NI~ hA(t)O-A(t')On K4 (nT)l¢In+4 hn(tt') for all oe¢

where

0"

• oI

"' "" '" "-.C " ..2 
%

-. ." . . .. - .°" " "'"" '" " " "" -.... " - °" " '-'-.. . . . . . . . . . . . . .. '['°• ",22'2'i°'i '"2 '



Ct ~n 2 = lx )-21 kc (x,)- Cx t)),2dx
k--O

2' -2. 2

k_n f (l+x2)-2jDk(13(x,t) - f3(x,t'))j2dx.

k=O

Also it is not difficult to show that for n>2 there exist positive constants

K5(n,T) and K6 (nT) such that for t,t' F [0,T] and Oe4

3. 45) jB(t)Oj n  <_ K5(n,T )'O' n

(3.46) IB(t)O - B(t')l n  K6 (n,T)1 n g(t~t).

where

g( t, t' ) = R e y lu(y, t)-u(y, t') Idy

+f eYlRa(yt)u(ty) - a(y,t')u(y,t')Idy.

Notice that since all derivatives in x of a(x,t) and 13(xt) are bounded in

x and continuous in t, by the dominated convergence theorem h(t,t')-4 as t-t.

Also from Theorem 5.7.2 in [5]. for each T>0

I 'elYlu(y,t)dy < O<t<T.

Then by the dominated convergence theorem g (tt') - 0 as t - t'.

Next by Proposition 3.1 and (3. 44) the family {A(t)}t>o satisfies

conditions (a) and (b) in Theorem 1.3 and it generates a unique (C0 ,l)-reversed

evolution system {T(s,t): O<s<t< } on (. From (3.45) and (3.46) the family

{B(t)} satisfies the conditions of Theorem 1.4 and the family {A(t)+B(t)}

generates a unique (CO ,1)-reversed evolution system {V(s,t): O<s~t<-} on 0.

The theorem then follows applying Theorem 2.3.

Finally from (3.22) for each t>0 there exists KT(t)>O such that for COL

E(Mt[0])2< _ (t)II 2

Then by (3.11) and Theorem 2.2, for any integer p>6 we obtain f e C([0,°):¢' )

a.s. and (3.27). C1

In 1181 Tanaka and Ilitsuda consider a simple diffusion model of inter-

actin_ ,narticles. The stochas tic evolIution equat ion Of their example can be

sol ved in the tramework of a speci al compatible fami I of the torm A.\l t , as in

. - * . .. < . , . - -. _-- -- - .. . ... ,.-. .. .-..-- ...: - .-- ... .. .. v . -. .-. , -. . .-. -- .-.-.--.-... .. , .:...- -:
6 . . -
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